A mitotic kinesin-6, Pav-KLP, mediates interdependent cortical reorganization and spindle dynamics in Drosophila embryos.

نویسندگان

  • Patrizia Sommi
  • Revathi Ananthakrishnan
  • Dhanya K Cheerambathur
  • Mijung Kwon
  • Sandra Morales-Mulia
  • Ingrid Brust-Mascher
  • Alex Mogilner
چکیده

We investigated the role of Pav-KLP, a kinesin-6, in the coordination of spindle and cortical dynamics during mitosis in Drosophila embryos. In vitro, Pav-KLP behaves as a dimer. In vivo, it localizes to mitotic spindles and furrows. Inhibition of Pav-KLP causes defects in both spindle dynamics and furrow ingression, as well as causing changes in the distribution of actin and vesicles. Thus, Pav-KLP stabilizes the spindle by crosslinking interpolar microtubule bundles and contributes to actin furrow formation possibly by transporting membrane vesicles, actin and/or actin regulatory molecules along astral microtubules. Modeling suggests that furrow ingression during cellularization depends on: (1) a Pav-KLP-dependent force driving an initial slow stage of ingression; and (2) the subsequent Pav-KLP-driven transport of actin- and membrane-containing vesicles to the furrow during a fast stage of ingression. We hypothesize that Pav-KLP is a multifunctional mitotic motor that contributes both to bundling of interpolar microtubules, thus stabilizing the spindle, and to a biphasic mechanism of furrow ingression by pulling down the furrow and transporting vesicles that deliver new material to the descending furrow.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

pavarotti encodes a kinesin-like protein required to organize the central spindle and contractile ring for cytokinesis.

Mutations in the Drosophila gene pavarotti result in the formation of abnormally large cells in the embryonic nervous system. In mitotic cycle 16, cells of pav mutant embryos undergo normal anaphase but then develop an abnormal telophase spindle and fail to undertake cytokinesis. We show that the septin Peanut, actin, and the actin-associated protein Anillin, do not become correctly localized i...

متن کامل

Domains of the Pavarotti kinesin-like protein that direct its subcellular distribution: effects of mislocalisation on the tubulin and actin cytoskeleton during Drosophila oogenesis.

The kinesin-like protein encoded by pavarotti (Pav-KLP) is essential for cytokinesis and associates with the central part of the late mitotic spindle and interphase nuclei in somatic cells (Adams et al., 1988). Here we define regions of the molecule that regulate its subcellular localisation and study the consequences of overexpressing mutant forms of the protein during oogenesis in Drosophila....

متن کامل

Pavarotti/MKLP1 Regulates Microtubule Sliding and Neurite Outgrowth in Drosophila Neurons

Recently, we demonstrated that kinesin-1 can slide microtubules against each other, providing the mechanical force required for initial neurite extension in Drosophila neurons. This sliding is only observed in young neurons actively forming neurites and is dramatically downregulated in older neurons. The downregulation is not caused by the global shutdown of kinesin-1, as the ability of kinesin...

متن کامل

A Toll receptor–FoxO pathway represses Pavarotti/MKLP1 to promote microtubule dynamics in motoneurons

FoxO proteins are evolutionarily conserved regulators of neuronal structure and function, yet the neuron-specific pathways within which they act are poorly understood. To elucidate neuronal FoxO function in Drosophila melanogaster, we first screened for FoxO's upstream regulators and downstream effectors. On the upstream side, we present genetic and molecular pathway analyses indicating that th...

متن کامل

The KLP-7 Residue S546 Is a Putative Aurora Kinase Site Required for Microtubule Regulation at the Centrosome in C. elegans

Regulation of microtubule dynamics is essential for many cellular processes, including proper assembly and function of the mitotic spindle. The kinesin-13 microtubule-depolymerizing enzymes provide one mechanism to regulate microtubule behaviour temporally and spatially. Vertebrate MCAK locates to chromatin, kinetochores, spindle poles, microtubule tips, and the cytoplasm, implying that the reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of cell science

دوره 123 Pt 11  شماره 

صفحات  -

تاریخ انتشار 2010